The Space Network Alternative

Mission Services Program Office

The MSPO is responsible for Program Planning, Direction and Operation of NASAs Space flight Tracking and Data Network (STDN)

Background

White Sands Complex

- TWO FUNCTIONALLY IDENTICAL, GEOGRAPHICALLY SEPARATED GROUND TERMINALS AT THE WHITE SANDS TEST FACILITY
- THE WSC HAS FIVE SPACE TO GROUND LINK TERMINALS (SGLTs)
 - A SIXTH SGLT HAS BEEN INSTALLED AT THE REMOTE GROUND TERMINAL ON GUAM AS AN EXTENDED WSC SGLT
- THE WSC ALTERNATIVE RESOURCE TERMINAL (WART) FUNCTION IS USED TO COMMAND AND CONTROL TDRS-1 AND PROVIDES S-BAND (SSAF/SSAR) AND K-BAND (KSAR) SERVICES TO NSF ONLY
 - SERVICES UNABLE TO SUPPORT ON-ORBIT USERS

McMurdo/TDRSS Relay System (Demonstration)

- McMurdo/TDRSS Relay System
 - Two K-band relay sites will be accessible to the GN McMurdo Ground Station in Antarctica
 - Capable of Near Real-Time telemetry throughput from MGS to WSC via TDRS 171W/174W
 - Data Rates up to 150 MBPS can be supported
 - WSC has data interface into EDOS/EBNET for data transfer to GSFC for EOS MOCs

Tracking and Data Relay Satellites

First Generation TDRS F-1 through F-7

Second Generation TDRS F-8 through F-10

Present TDRSS Constellation

TDRSS Fields of View

TDRS VIEWS BASED ON 600KM USER ALTITUDE AT THE EQUATOR

SN Proficiency

Pre-Mission Services

TDRSS Services

- Mission Planning
 - Computer Link AnalysisSystem (CLASS)
 - Static Link Margin Analysis
 - Dynamic Link Analysis
 of Actual trajectory/orbit
 to determine TDRS
 coverage periods (Value added powered flight,
 orbit insertion)

TDRSS Services (cont'd)

- Operations Planning
 - Implementation of network enhancements to support evolving generic and unique customer requirements
- Testing
 - Provide characterization, IV&V and compatibility testing for mission readiness
 - Proficiency and abort simulations
 - Testing Resources
 - Compatibility Test Van
 - Direct Support via Pad or rooftop antenna
 - RF SOC

TDRSS Services (cont'd)

- Pre Launch Support
 - Payload and Launch Vehicle
 RF checkout
 - Vector Verification testing
- Launch Support
 - Provide acquisition data to WSC for launch support
 - Real time tracking and data acquisition of launch vehicle and payload for separation and orbital insertion
 - Near real time data for Polar Orbiters utilizing MGS and MTRS

Direct Mission Support

SN Support of GN Mode Operations

- SN can provide Command/Telemetry and Tracking support for GN mode S-Band Communications
 - Typically 1 to 2 kbps Command
 - 8 to 16 kbps telemetry (using omni antenna on spacecraft)
- Advantages
 - Provides support for on-orbit S/C emergencies
 - Single TDRSS view up to 50 minutes using WSC and GUAM
 - Lower transponder costs
 - Occasional support can be handled via manual scheduling (verbal/email) precluding additional costs to the MOC for hardware and interfaces (Presumes support parameters are already in the NCCDS)

Expendable Launch Vehicle Support

- Proven Track Record for ELV support (see backup material for current and future ELV customers)
- Provides advantages for receiving telemetry data as well as advantages to Project Control Centers
 - Expanded geometric coverage for critical events for flexible mission profiles
 - Eliminates costly methods of receiving telemetry
 - Almost no data latency
 - Variety of data rates,
 frequencies and modulation
 types can be supported

Spacecraft Launch and Early Orbit

- SN support typically includes:
 - Launch Vehicle and Payload command and telemetry from pad testing through early orbit
 - Launch Vehicle and Payload acquisition data for launch and early orbit
 - Proficiency and abort simulations
- SN provides telemetry and command support
 - SN mode of operations
 - GN mode of operations
- SN provides tracking data to FDF for downrange tracking and initial orbit determination
 - FDF processes and evaluates inertial guidance system (IGS) and LTAS data received at FDF. Compares real-time data to current data being used by SN
 - FDF processes LV telemetry to obtain initial orbit determination
 - Provides real-time acquisition updates to SN as required

Global Coverage for Mark Events

Spacecraft Reentry Support

- TDRSS was used as prime support for CGRO Reentry at mission termination. TDRSS held link until just prior to breakup. TDRS LOS at 90 km
- Dynamic analysis of communication coverage provided by CLASS for MOC planning of reentry activities
- FDF analysis of de-boost trajectories to develop de-boost acquisition data plan
- SN can provide coordination with other space tracking networks or agencies.
- Missions currently planning reentry
 - EUVE early 2002
 - TRMM late 2002

TDRSS Services (cont'd)

- Line Outage Recording
 - Data recorded at WSC in the event of NISN circuit failures
 - Near real-time delivery of recorded data

Space Network Success Stories

• EO-1

- GN tracking data unusable by FDF
- NORAD C-band radars tracked the wrong object
- TDRSS was the only system to correctly acquire and provide valid 1 and 2 way tracking data to FDF and MOC
- Ongoing CMD/TLM with GN transponder

NOAA-L

- Planned ARIA Relay support for Launch and Early Orbit
 - ARIA on-board emergency cancelled first launch attempt
 - ARIA mechanical difficulty resulted in a no-show for the next launch attempt
- TDRSS was planned for tracking data but was not intended to provide telemetry support due to calculated negative link margins
 - Decision was made to attempt telemetry acquisition
 - TDRSS successfully closed link and for the first time provided real-time telemetry for NOAA spacecraft separation and deployment
 - TDRSS is now being baselined for NOAA M, N and N' missions

Space Network Success Stories (cont'd)

FUSE

- SN supported L&EO telemetry and best effort Command (WSC Crash Cart)
- SN provided critical support when Puerto Rico Ground station was damaged due to adverse weather
- FUSE carried out a complete flight software reload via TDRSS. Extended TDRSS view significantly decreased the time necessary to perform the reload

CGRO

- Loss of recorders drastically reduced science data collection to in-view real-time downlink
- SN implemented GRTS effectively closing the ZOE thereby providing near 100% real-time coverage
- Implementation of GRTS enabled the CGRO mission to meet its science objectives

FDF Successes With the SN Customer Community

- Titan B-32 Mission (April 30, 1999)
 - Non-nominal burn during launch,
 - FDF responded by using its unique software capabilities to update the TDRS pointing data to ensure spacecraft acquisition during this critical mission phase.
- TDRS-H Early Orbit Operations
 - FDF assumed primary orbit determination responsibilities after unforeseen processing problems prevented Hughes from performing this task
- ETS-7 Docking Anomaly
 - Planned SN and ETS support only after NASDA Relay satellite failure
 - FDF provided critical OD data during docking anomaly
 - SN and FDF support resulted in meeting nearly 100% of the science objectives

The Future

- MAP
 - Critical Burns to L-1 (Command, telemetry and tracking)
- TIMED
 - Launch and Early Orbit (Command, telemetry and tracking)
- GALEX
 - Launch and Early Orbit (Command, telemetry and tracking)
- VCL
 - Launch, Early Orbit (Command, telemetry and tracking)

Technology

Demand Access

- Demand Access Service (DAS)
 - Available March 2002
 - Dedicated 24 X 7 MAR service for customer support via TDRS 1-7 (MAF is not included in DAS)
 - Initially 8 new receivers at WSC followed by implementation of 8 additional receivers at Guam
 - Unlimited expansion of DAS services is possible
 - Scheduled and Controlled via SWSI interface
 - TCP/IP telemetry data connectivity via NISN open or closed IONET circuits

Web Based SN Services

- SN Web Services Interface (SWSI)
 - Available in March 2002
 - Provides SN service scheduling and real-time control of TDRSS services
 - NISN interfaces available for open and closed IONET
- WSC TCP/IP Data Interface Service Capability (WDISC)
 - Provides TCP/IP connectivity for TDRSS Command and Telemetry services
 - Data interface available to both open and closed IONET NISN circuits
 - WDISC schedules are currently submitted verbally or by Briefing Message to NCC. Minimum turnaround of 20 minutes to obtain services when requested verbally
- FDF Product Server
 - Provides general and mission specific products in support of flight project missions (LOF, TDRS IIRVs, OE)

Fourth Generation Transponder

- TDRSS/GN Compatible
- Low Power Consumption
 - 6 Watts for Receiver
 - 34 Watts for Rx/Tx (w/5 Watt transmitter output)
- Lightweight 8 lbs.
- Small Profile 8"L X 6.3"W X 5.2" H
- Ku-Band Transmitter Exciter Option
 - Adds 1lb and 5 Watts power consumption
 - Motorola has 14 units on order
 - Gravity Probe (2), X-38 (2), National Scientific Balloon Facility (4), EOS-PM (2), EOS Chem (2), SWIFT (2)
 - Cost ≈ 1.1 Mil

Low Power Transceiver

- TDRSS/GN Compatible
 - Integrated 12 channel receiver for SN/GN/GPS
 - Tx power options from 1 Watt to 25
 Watts
- Low power consumption
 - 8 Watts for Receiver
 - 11 Watts with 1 Watt HPA
- Lightweight 6.7 lbs.
- Low Profile 4.68" X 5.33" X 4.25"
- Being considered for ELV/EELV Range Safety application and On-Orbit Spacecraft
- Will fly aboard STS-107 (4/2002) as a Hitchhiker experiment for Proof-of-Concept and qualification
- $Cost \approx 300K 400K$

Multimode S-Band NASA/GN Transceiver

- TDRSS/GN Compatible
- Low Power Consumption
 - 6 Watts for Receiver
 - Transmitter options under development
- Being considered for On-Orbit and Slow moving ground based applications
- Motorola has 18 MMTs on order
 - X-37(8)
 - National Scientific Balloon Facility (9)
 - C/NOFS (1) COMM/NAV Outage Forecasting System (AFRL)
 - Cost ≈ 300 K 400 K

Resources

- TDRSS Online Information Center
 - A comprehensive online resource with current and detailed information on all aspects of TDRSS and the Space Network
 - This presentation can be found contained in this website
 - http://nmsp.gsfc.nasa.gov/tdrss/
- Document and Data Control System Online Library
 - A website that provides easy access to MSPO technical documentation
 - http://csoc-ddcs.csoconline.com/library/
- David Zillig for information regarding the Fourth Generation Transponder, LPT and MMT
 - David.J.Zillig.1@gsfc.nasa.gov
- Demand Access Website
 - http://stelwscpo.gsfc.nasa.gov/Das/
- FDF Product Server
 - http://mmfd.gsfc.nasa.gov/FDD_products.html

The Space Network
Don't leave earth without it

Backup

ELV Support

Current ELV Customers

- TITAN/CENTAUR (MAY 94)
 - 128 KB
- ATLAS/CENTAUR (JAN 96)
 - 512 KB
- SEALAUNCH (MARCH 99)
 - 512 KB
- ATLAS III (MAY 00)
 - 256 KB/200 KB (I/Q)
- NAVY P3 RELAY
- TITAN –16 KB
- DELTA II $(2^{ND} STAGE) 17 KB$
- DELTA II (3RD STAGE) 9.6 KB
- PEGASUS 116KB
- IUS 64 KB

Future ELV Customers

- DELTA IV (EELV)
 - 192 KB
- ARIANE V (ATV MISSION FOR ESA)
 - 250 KB
- H-IIA (NASDA)
 - 131 KB
- KISTLER AEROSPACE (REUSABLE)
 - 100 KB
- ATLAS V (EELV)
 - UNKNOWN (ANTICIPATED SAME AS ATLAS III)

The Flight Dynamics Facility

Provides

- Orbit Determination
- Trajectory Analysis for support optimization
- Acquisition Data
- Tracking Data Evaluation

• For

- STS -- including contingency and yaw steering support
- ELV -- including yaw steering and variable azimuth support
- ISS and Orbiting Spacecraft -- Including orbit determination using one-way Doppler
- De-orbiting spacecraft -- e.g., CGRO, TRMM
- Non-space vehicles -- e.g., Aircraft, ships, balloons, quasars
- International Customers -- e.g., Ariane, ETS-VI/VII

• Via

- Unique Interfaces
- Network Interfaces
- The Internet -- FDF Products Server

• Using

- Automated systems
- COTS products and new technologies integrated with mission proven legacy systems

As needed

- Assists other SN elements in problem resolution
- Provides analysis for future missions

Service Summary/System Capacity

	FREQUENCY	SERVICE	MAX. DATA RATE	SERVICES PER TDRS 1	WSC ⁴ CAPABILITY	GUAM CAPABILITY
SINGLE ACCESS S BAND	2020.4 MHz - 2123.3 MHz	FORWARD	300 kbps	2	10	2
	2200 MHz - 2300 MHz	RETURN	6 Mbps	2	10	2
Ku BAND	13.747 GHz - 13.802 GHz	FORWARD	25 Mbps	2	10 ²	2
	14.887 GHz - 15.119 GHz	RETURN	300 Mbps	2	10 ²	2
Ka BAND	22.55 GHz 23.55 GHz	FORWARD	25 Mbps	2	6 ²	0
	25.25 GHz 27.50 GHz	RETURN	300 Mbps 800 Mbps	2 1	6 ² 0 ³	0
MULTIPLE ACCESS S-BAND (1-7)	2103.1 MHz - 2109.7 MHz	FORWARD	10 kbps	1	4	1
	2284.5 MHz - 2290.5 MHz	RETURN	150 kbps	5	20	2
SMA (H,I,J)	2284.5 MHz – 2290.5 MHz	RETURN	6 Mbps	6	18	0

Notes:

- 1. Fully operational S/C
- 2. Ku and Ka FWD/RTN Service is Shared on the TDRS/WSC SGL. Simultaneous Ku and Ka Service Is Not Possible
- 3. Ka-Band (H,I,J) 800 Mbps is not supported on the Ground (WSC)
- 4. 4 SGLTS at WSC are capable of supporting the H,I,J S/C. WSC Ka-Band and SMA capability reflect the 6/18 respectively because there are only 3 H,I,J S/C

² way ranging and 1 and 2 way Doppler tracking available

TDRS/TDRS H, I, J Service Comparison

SERVICE			TDRSS	TDRS - H,I,J	NOTES	
SINGLE ACCESS	O DAND	FWD	300 kbps	300 kbps		
	S-BAND	RTN	6 Mbps	6 Mbps	NO CHANGE	
	Ku-BAND	FWD	25 Mbps	25 Mbps		
	ING BAND	RTN	300 Mbps	300 Mbps		
	Ka-BAND	FWD	N/A	25 Mbps	23/25-27 GHz frequency	
	Tta B/ II VB	RTN	N/A	800 Mbps	band	
	NUMBER OF LINKS PER SPACECRAFT		2 SSA 2 KuSA	2 SSA 2 KuSA 2 KaSA	FOR TDRS H,I,J SIMULTANEOUS OPERATION OF S & Ku AND S & Ka SERVICES A SINGLE SA ANTENNA ARE REQUIRED	
MULTIPLE	NUMBER	FWD	1 @ 10 kbps	1 @ 10 kbps (8 dB over TDRSS)	ANTICIPATED SSA USERS LESS THAN 3 Mbps OFFLAOADED TO TDRS H,I,J MA	
ACCESS	LINKS PER S/C	RTN	5 @ 150 kbps LIMITED BY GROUND EQ. ONLY	6 @ 3 Mbps (ONBOARD BEAMFORMING)		
CUSTOMER TRACKING					NO CHANGE	